바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Terrestrial ecosystem, Search Result: 2
1
Seungbum Hong(Climate Change Research Team, National Institute of Ecology) ; Inyoung Jang(Climate Change Research Team, National Institute of Ecology) ; Heon-Mo Jeong(Climate Change Research Team, National Institute of Ecology) 2020, Vol.1, No.1, pp.58-67 https://doi.org/10.22920/PNIE.2020.1.1.58
초록보기
Abstract

Terrestrial ecosystems influence climate change via their climate regulation function, which is manifested within the carbon, water, and energy circulation between the atmosphere and surface. However, it has been challenging to quantify the climate regulation of terrestrial ecosystems and identify its regional distribution, which provides useful information for establishing regional climate-mitigation plans as well as facilitates better understanding of the interactions between the climate and land processes. In this study, a land surface model (LSM) that represents the land-atmosphere interactions and plant phenological variations was introduced to assess the contributions of terrestrial ecosystems to atmospheric warming or cooling effects over East Asia over the last half century. Three main climate-regulating components were simulated: net radiation flux, carbon exchange, and moisture flux at the surface. Then, the contribution of each component to the atmospheric warming or cooling (negative or positive feedback to the atmosphere, respectively) was investigated. The results showed that the terrestrial ecosystem over the Siberian region has shown a relatively large increase in positive feedback due to the enhancement of biogeochemical processes, indicating an offset effect to delay global warming. Meanwhile, the Gobi Desert shows different regional variations: increase in positive feedback in its southern part but increase in negative one in its eastern part, which implies the eastward movements of desert areas. As such, even though the LSM has limitations, this model approach to quantify the climate regulation is useful to extract the relevant characteristics in its spatio-temporal variations.


2
Jihyun Kang(Team of Protected Area Research, National Institute of Ecology) ; Hyoun-Gi Cha(Team of Protected Area Research, National Institute of Ecology) ; Hyun Chul Shin(Team of Protected Area Research, National Institute of Ecology) ; Yunkyong Lee(Team of Protected Area Research, National Institute of Ecology) ; Doory No(Team of Protected Area Research, National Institute of Ecology) ; Wooyoung Kim(Team of Protected Area Research, National Institute of Ecology) ; Soon Jae Eum(Team of Protected Area Research, National Institute of Ecology) 2022, Vol.3, No.3, pp.165-171 https://doi.org/10.22920/PNIE.2022.3.3.165
초록보기
Abstract

The Chinese crested tern (Thalasseus bersteini) is one of the most globally endangered species, listed as “Critically Endangered (CE)” on the IUCN Red List, with only approximately 30-49 individuals surviving in the wild. Chinese crested terns were discovered to breed in South Korea for the first time in 2016 while conducting a census on uninhabited islands. The Ministry of Environment has declared the breeding habitat of the Chinese crested terns as “Specified Island” to protect this CE species. However, brown rats (Rattus norvegicus) inhabiting the breeding grounds of the Chinese crested terns and Black-tailed gulls may potentially pose a threat to the breeding of these avian species. Therefore, we conducted a study on the feeding behavior of brown rats involving stable isotope analysis to determine their food sources. Fecal analysis showed that brown rats mainly fed on plants, whereas they scarcely fed on animals, such as insects. In addition, the stable isotope analysis showed that the δ13C values of brown rats, insects, and Indian goosegrasses were approximately –16 to –11‰, whereas the δ13C value of Chinese crested terns that obtained their food from the marine ecosystem was approximately –22 to –18‰. Hence, we conclude that the source of carbon for brown rats on this island is the terrestrial ecosystem. We ruled out the possibility of any direct prey– predator interaction between the brown rat and the Chinese crested tern or Black-tailed gull.


Proceedings of the National Institute of Ecology of the Republic of Korea