바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Restoration, Search Result: 12
11
Giancarlo Pocholo L. Enriquez(Institute of Biology, University of the Philippines) ; Lillian Jennifer V. Rodriguez(Institute of Biology, University of the Philippines) 2023, Vol.4, No.1, pp.28-42 https://doi.org/10.22920/PNIE.2023.4.1.28
초록보기
Abstract

Seed dispersal supports community structure, maintains genetic connectivity across fragmented landscapes, and influences vegetation assemblages. In the Philippines, only two seed dispersal studies have compared different dispersal agents. We examined the seed dispersal patterns of water, wind, birds, and bats in the Caliraya Watershed, Philippines. We aimed to determine the floral species that were dispersed and how the forest characteristics influenced seed dispersal. By running seed rain traps and drift litter collection from March to June 2022, we analyzed 14,090 seeds in a privately owned study site within the watershed. Water did not exclusively disperse any species and acted as a secondary disperser. Seed density (seeds/trap) was significantly higher for bird-dispersed (n=166) and bat-dispersed (n=145) seeds than for wind-dispersed (n=79) seeds (One-way analysis of variance [ANOVA]: F2,87=16.21, P<0.0001). Species number (species/trap) was significantly higher for bird-dispersed (n=3.7) and bat-dispersed (n=3.9) seeds than for wind-dispersed (n=0.2) seeds (One-way ANOVA: F2,87=16.67, P<0.0001). Birds dispersed more species because they are more diverse and access a wider variety of fruits, unlike bats. Birds and bats target different fruits and provide separate seed dispersal services. Generalized linear model analyses revealed that the number and basal area of fleshy fruit trees most strongly influenced the bird seed dispersal patterns. Therefore, we recommend a three-way approach to restoration efforts in the Caliraya Watershed: (1) ensure the presence of fleshy fruit trees in restoration zones, (2) assist the establishment of mid-successional and wind-dispersed trees, and (3) intensify the conservation efforts for both flora and faunal diversity.


12
Jong-Yun Choi(National Institute of Ecology) ; Seong-Ki Kim(National Institute of Ecology) ; Jeong-Cheol Kim(National Institute of Ecology) ; Hyeon-Jeong Lee(National Institute of Ecology) ; Hyo-Jeong Kwon(National Institute of Ecology) ; Jong-Hak Yun(National Institute of Ecology) 2021, Vol.2, No.1, pp.53-61 https://doi.org/10.22920/PNIE.2021.2.1.53
초록보기
Abstract

Distribution of fish community depends largely on environmental disturbance such as habitat change. In this study, we evaluated the impact of environmental variables and microhabitat patch types on fish distribution in Yudeung Stream at 15 sites between early May and late June 2019. We used non-metric multidimensional scaling to examine the distribution patterns of fish in each site. Gnathopogon strigatus, Squalidus gracilis majimae, Zacco koreanus, and Zacco platypus were associated with riffle and boulder areas, whereas Iksookimia koreensis, Acheilognathus koreensis, Coreoleuciscus splendidus, Sarcocheilichthys nigripinnis morii, and Odontobutis interrupta were associated with large shallow areas. In contrast, Cyprinus carpio, Carassius auratus, Lepomis macrochirus, and Micropterus salmoides were found at downstream sites associated with large pool areas, sandy/clay-bottomed areas, and vegetated areas. On the basis of these results, we suggest that microhabitat patch types are important in determining the diversity and abundance of fish communities, since a mosaic of different microhabitats supports diverse fish species. As such, microhabitat patches are key components of freshwater stream ecosystem heterogeneity, and a suitable patch composition in stream construction or restoration schemes will support ecologically healthy food webs.


Proceedings of the National Institute of Ecology of the Republic of Korea