바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Infections, Search Result: 2
1
Soyeon Park(Evolutionary Ecology Research Team, National Institute of Ecology) ; Pureum Noh(Herbal Medicine, Research Center, Korea Institute of Oriental Medicine) ; Jae-Yeon Kang(Evolutionary Ecology Research Team, National Institute of Ecology) 2020, Vol.1, No.1, pp.52-57 https://doi.org/10.22920/PNIE.2020.1.1.52
초록보기
Abstract

Bacterial symbionts are common across insects, including ants (Hymenoptera: Formicidae). Reproduction-manipulating endosymbionts, such as Wolbachia, Spiroplasma, Rickettsia, and Cardinium, are closely associated with many aspects of host-insect life. In addition, phage WO plays an essential role in the phenotypic effects of Wolbachia. Although endosymbionts are possible biological control agents, there is a lack of knowledge of their rate of infection of ants in Korea. We tested a range of Korean ant species for the presence of Wolbachia, Spiroplasma, Rickettsia, Cardinium, and phage WO by extracting DNA from the ants and using specific primer sets to test the status of infections. In addition, the mitochondrial cytochrome c oxidase I (COI) gene of the host ants was amplified to confirm the molecular identification and phylogenetic relationship between the hosts. We found that infection with Wolbachia (29.6% of species) is relatively common when compared with that of other endosymbionts. Only one species was infected with Spiroplasma. Infection with Rickettsia and Cardinium was not detected in the examined ants. Most Wolbachia in ants were infected with phage WO. Although the phenotypic effects of endosymbionts in ants are still unknown, this first survey of endosymbionts in Korea is the first step toward the use of reproduction-manipulating endosymbionts.


2
Young Ji Kim(Department of Veterinary Public Health, College of Veterinary Science, Chungbuk National University) ; Jin Ho Jang(Department of Wildlife Disease, College of Veterinary Science, Jeju National University) ; Min Chan Kim(Department of Microbiology, College of Natural Sciences, Chungbuk National University) ; Young-Seok Park(Chungnam Wild Animal Rescue Center, Kongju National University) ; Hye Kwon Kim(Department of Microbiology, College of Natural Sciences, Chungbuk National University) 2022, Vol.3, No.4, pp.221-226 https://doi.org/10.22920/PNIE.2022.3.4.221
초록보기
Abstract

A filarial nematode was found in a blood sample of an Anas falcata individual collected in South Korea in 2018. Phylogenetic analysis based on partial cytochrome C oxidase subunit I (COI) sequences placed the nematode as a novel genus of the family Onchocercidae and as closely related to Mansonella species, Chandlerella quiscali, and filarial nematodes recently reported in avian species. However, different phylogenetic relationship was observed in the NADH dehydrogenase subunit 5 and 12S rRNA-based phylogenetic trees, which might indicate the filarial nematode found in this study was not defined to belong to the known specific genera of the family Onchocercidae. The screening of 105 additional avian blood samples retrieved only one 12S rRNA-targeting polymerase chain reaction (PCR)-positive sample, which indicates that filarial nematode infection is rare in wild birds or that it occurs below the detection limit of PCR in blood samples. Nevertheless, considering the recent findings about ancient interactions between birds and human pathogenic filarial nematodes and their pathogenic potential in several avian species, additional exploration of novel filarial nematodes in wild birds remains necessary.


Proceedings of the National Institute of Ecology of the Republic of Korea