바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Ecology, Search Result: 4
초록보기
Abstract

Ecological communities adapt the concept of informatics in the late 20 century and develop rapidly in the early 21 century to form Ecoinformatics as the new approach of ecological research. The new approach takes into account the data-intensive nature of ecology, the precious information content of ecological data, and the growing capacity of computational technology to leverage complex data as well as the critical need for informing sustainable management of complex ecosystems. It comprehends techniques for data management, data analysis, synthesis, and forecasting on ecological research. The present paper attempts to review the development history, studies and application cases of ecoinformatics in ecological research especially on Long Term Ecological Research (LTER). From the applications show that the ecoinformatics approach and management system have formed a new paradigm in ecological research


2
Ho-Gyeong Moon(Team of Cooperation on Wetlands, National Institute of Ecology) ; Han Kim(Team of Cooperation on Wetlands, National Institute of Ecology) ; Nak-Hyun Choi(Team of Cooperation on Wetlands, National Institute of Ecology) ; Dong-Pil Kim(Department of Landscape Architecture, Pusan National University) 2020, Vol.1, No.1, pp.31-40 https://doi.org/10.22920/PNIE.2020.1.1.31
초록보기
Abstract

The rapid development of technologies in unmanned aerial vehicles (UAVs) has led to their use in various areas. UAVs are mainly used for commercial purposes, but their utilization is increasingly important in other areas because their operation cost is less than satellites and aerial imaging. The utilization of UAVs in the environment/ecology area is relatively new. Therefore, identifying the trends of UAV-related spatial information is significant in basic research for UAV utilization. This study quantitatively identified domestic and international research trends related to UAV utilization and analyzed research areas. An attempt was also made to identify upcoming UAV-related topics in the environment/ecology research field using text mining to analyze the bibliographic information of global research literature. Domestic UAV-related studies were classified into seven clusters where basic research on “UAV technology/industry trends” was abundant, and studies on data collection and analysis through UAV remote sensing technology have increased since 2015. Eight clusters were identified for international studies where the most active research area international was “remote sensing technology/data analysis”. In addition, Canopy, Classification, Forest, Leaf Area Index, Normalized Difference Vegetation Index, Temperature, Tree, and Atmosphere appeared as the main keywords related to environment and ecology. The appearance frequencies and association strengths were high because the advancement in UAV optical sensor technology and the rapid development of image processing technology enabled the acquisition of data that could not be obtained from existing spatial information. They are recognized as future research topics as related domestic studies have begun corresponding to international research.


3
Dong Wook Kim(National Institute of Ecology) ; Da Young Park(National Institute of Ecology) ; Dae Young Jeong(National Institute of Ecology) ; Hyeong Cheol Park(National Institute of Ecology) 2020, Vol.1, No.1, pp.68-73 https://doi.org/10.22920/PNIE.2020.1.1.68
초록보기
Abstract

Korean fir (Abies koreana) is an evergreen coniferous tree species that is unique to South Korea. A. koreana is found in a limited sub-alpine habitat and is considered particularly vulnerable to climate change. Identification of populations vulnerable to climate change is an important component of conservation programs. In this study, a heat stress-induced transcriptome RNA-seq dataset was used to identify a subset of six genes for assessment as candidate marker genes for ecologically vulnerable populations. Samples of A. koreana were isolated from ecologically stable and vulnerable regions of the Halla and Jiri mountains, and the expression levels of the six candidate markers were assessed using quantitative real-time polymerase chain reaction. All six of the candidate genes exhibited higher expression levels in samples from vulnerable regions compared with stable regions. These results confirm that the six high temperature-induced genes can be used as diagnostic markers for the identification of populations of A. koreana that are experiencing stress due to the effects of climate change.


4
Rob H. Marrs(School of Environmental Sciences, University of Liverpool) ; H.A. McAllister(Institute of Integrative Biology, University of Liverpool) 2020, Vol.1, No.1, pp.22-30 https://doi.org/10.22920/PNIE.2020.1.1.22
초록보기
Abstract

Many areas of vegetation in the British uplands have reduced species diversity as a result of sheep overgrazing. It has been suggested that abandonment or re-wilding strategies might be used to reverse this. A likely first step would be the removal or reduction of grazing livestock from upland areas, with a presumption that this would lead to a recovery in species richness. However, we do not know if this would work, or the timescales involved. One of the important areas where more knowledge is needed is information on the size and composition of soil seedbanks as regeneration from zseed is a likely pathway of recovery. Here, we compared seedbanks in both grazed and ungrazed plots in five experiments at Moor House NNR in the northern Pennines; these sheep grazing exclusion experiments were started 52 and 63/64 years ago. Soil samples (n=10) were collected from both grazed and ungrazed plots in each experiment, and seed emergence counted in glasshouse trials. We detected only seeds of common species and very few dicotyledonous species. This suggests that the soil seedbank is unlikely to be a reliable source of the less common species for ecological restoration in these upland communities, suggesting an extinction debt. Therefore, seed addition and the creation of suitable safe-sites for germination may be needed in conjunction with grazing controls to allow the establishment of plants that will increase the species richness of the vegetation. However, this interventionist restoration approach remains to be tested.


Proceedings of the National Institute of Ecology of the Republic of Korea