바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Distribution, Search Result: 23
21
Yong-Su Kwon(Ecobank Team, Division of Ecological Information, National Institute of Ecology) ; Man-Seok Shin(Ecobank Team, Division of Ecological Information, National Institute of Ecology) ; Hee-Nam Yoon(Ecobank Team, Division of Ecological Information, National Institute of Ecology) 2022, Vol.3, No.2, pp.84-96 https://doi.org/10.22920/PNIE.2022.3.2.84
초록보기
Abstract

Most of the islands of Korea are distributed in the South and West Sea, and it consists of independent small stream. As a result, the fish community that inhabits the island's stream is isolated from the mainland and other island. This study utilized a Self-Organizing Map (SOM) and a random forest model to analyze the relationship between environmental variables and fish communities inhabiting islands in South Korea. Through the SOM analysis, the fish communities were divided into three clusters, and there were differences in biotic and abiotic factors between these groups. Cluster I consisted of sites with relatively larger island areas and a higher number of species and population. It was found that 15 out of 16 indicator species were included. Meanwhile, the remaining clusters had fewer species and populations. Cluster II, especially, showed the lowest impact from physical variables such as water width and depth. As a result of predicting the species richness using the random forest model, physical variables in habitats, such as stream width and water depth, had a relatively higher importance on species richness. On the other hand, forest area was the most important variables for predicting Shannon diversity, followed by maximum water depth, and gravel. The results suggest that this study can be used as basic data for establishing a stream ecosystem management strategy in terms of conservation and protection of biological resources in streams of islands.


초록보기
Abstract

Natural habitats of the Korean long-tailed goral (Naemorhedus caudatus) have been fragmented by anthropogenic activities in South Korea in the last decades. Here, the individual identity, genetic variation, and population differentiation of the endangered species were examined via the multiple-tube approach using a non-invasive genotyping method. The average number of alleles was 3.16 alleles/locus for the total population. The Yanggu population (1.66) showed relatively lower average number of alleles than the Inje population (3.67). Of the total 19 alleles, only seven (36.8%) alleles were shared by the two populations. Using five polymorphic out of six loci, four and six different goral individuals from the captive Yanggu (n=24) and the wild Inje (n=28) population were identified, respectively. The allele distribution was not identical between the two populations (Fisher’s exact test: P<0.01). A considerably low migration rate was detected between the two populations (no. of migrants after correction for size=0.294). Additionally, the F statistics results indicated significant population differentiation between them, however, quite low ( FST=0.327, P<0.01). The posterior probabilities indicated that the two populations originated from a single panmictic population (P=0.959) and the assignment test results designated all individuals to both populations with nearly equal likelihood. These could be resulted from moderate population differentiation between the populations. No significant evidence supported recent population bottleneck in the total Korean goral population. This study could provide us with useful population genetic information for conservation and management of the endangered species.’


23
Seungbum Hong(Climate Change Research Team, National Institute of Ecology) ; Inyoung Jang(Climate Change Research Team, National Institute of Ecology) ; Heon-Mo Jeong(Climate Change Research Team, National Institute of Ecology) 2020, Vol.1, No.1, pp.58-67 https://doi.org/10.22920/PNIE.2020.1.1.58
초록보기
Abstract

Terrestrial ecosystems influence climate change via their climate regulation function, which is manifested within the carbon, water, and energy circulation between the atmosphere and surface. However, it has been challenging to quantify the climate regulation of terrestrial ecosystems and identify its regional distribution, which provides useful information for establishing regional climate-mitigation plans as well as facilitates better understanding of the interactions between the climate and land processes. In this study, a land surface model (LSM) that represents the land-atmosphere interactions and plant phenological variations was introduced to assess the contributions of terrestrial ecosystems to atmospheric warming or cooling effects over East Asia over the last half century. Three main climate-regulating components were simulated: net radiation flux, carbon exchange, and moisture flux at the surface. Then, the contribution of each component to the atmospheric warming or cooling (negative or positive feedback to the atmosphere, respectively) was investigated. The results showed that the terrestrial ecosystem over the Siberian region has shown a relatively large increase in positive feedback due to the enhancement of biogeochemical processes, indicating an offset effect to delay global warming. Meanwhile, the Gobi Desert shows different regional variations: increase in positive feedback in its southern part but increase in negative one in its eastern part, which implies the eastward movements of desert areas. As such, even though the LSM has limitations, this model approach to quantify the climate regulation is useful to extract the relevant characteristics in its spatio-temporal variations.


Proceedings of the National Institute of Ecology of the Republic of Korea