바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Conservation, Search Result: 8
1
Devy Atika Farah(Universitas Negeri) ; Agus Dharmawan(Universitas Negeri) ; Vivi Novianti(Universitas Negeri) 2021, Vol.2, No.3, pp.144-152 https://doi.org/10.22920/PNIE.2021.2.3.144
초록보기
Abstract

Sanankerto is one of pilot projects for tourism villages in Indonesia due to its natural tourism potential with a 24-ha bamboo forest located in Boon Pring Andeman area. However, the distribution of existing bamboo has never been identified or mapped. Thus, the management is facing difficulty in planning and developing tourism potential as well as spatial management in the area. Therefore, the objectives of this study were to identify and analyze the structure of bamboo vegetation in the Boon Pring Tourism village and to perform vegetation mapping. The type of research was descriptive exploratory with a cluster sampling technique (i.e., a two-stage cluster) covering an area of ± 10 ha. Bamboo vegetation analysis was performed by calculating diversity index (H’), evenness index (E), and Species Richness index (R). Data were collected through observation and interviews with local people and the manager to determine zonation division. Mapping of bamboo vegetation based on zoning was processed into thematic maps using ArcGis 10.3. Micro climatic factors were measured with three replications for each sub-cluster. Data were analyzed descriptively and quantitatively. Nine species of bamboo identified. Diversity, evenness, and species richness indices differed at each location. Activities of local communities, tourists, and manager determined the presence, number, and distribution of bamboo species. These bamboo distribution maps in three zoning (utilization, buffer, and core) can be used by manager for planning and developing natural tourism potential.


2
Dong-Soo Ha(Eco-institute for Oriental Stork, Korea National University of Education) ; Su-Kyung Kim(Eco-institute for Oriental Stork, Korea National University of Education) ; Yong-Un Shin(Natural Heritage Division, Cultural Heritage Administration) ; Jongmin Yoon(Research Center for Endangered Species, National Institute of Ecology) 2021, Vol.2, No.4, pp.293-297 https://doi.org/10.22920/PNIE.2021.2.4.293
초록보기
Abstract

The oriental stork (Ciconia boyciana) is listed as an endangered species internationally. Its resident population has been extirpated in South Korea since 1971. Its predicted historical habitat included forests (54%), rice paddy fields (28%), grasslands (17%), river-streams (less than 1%), and villages (less than 1%) based on pre-extirpation records in a previous study. However, habitat attributes of recently reintroduced oriental storks since 2015 remain unknown. To examine habitat use patterns and home ranges of recently reintroduced oriental storks, 2015-2017 tracking data of 17 individuals were used to analyze their spatial attributes with a Kernel Density Estimate method and breeding status. Their habitat use patterns from peripheral to core areas were highly associated with increasing rice paddy fields (26%) and decreasing forested areas (55%). Scale-dependent home ranges were 51% smaller for breeders than for non-breeders on average. Our study results highlight that the habitat use pattern of reintroduced oriental storks seems to be comparable to the historical pattern where the used area is likely to be more centralized for breeders than for non-breeders in South Korea. Furthermore, the direction of habitat management for oriental storks should focus on biodiversity improvement of rice paddy fields with chemical free cultivation and irrigation.


3
Ju-Duk Yoon(Research Center for Endangered Species, National Institute of Ecology) ; Kwanik Kwon(Research Center for Endangered Species, National Institute of Ecology) ; Jeongwoo Yoo(Research Center for Endangered Species, National Institute of Ecology) ; Nakyung Yoo(Research Center for Endangered Species, National Institute of Ecology) 2021, Vol.2, No.4, pp.247-258 https://doi.org/10.22920/PNIE.2021.2.4.247
초록보기
Abstract

To understand restoration and conservation projects conducted in Korea for endangered freshwater fishes and amphibians/reptiles, information about Request for Protocols-related studies on restoration, breeding, and release were collected. Trends of studies were visualized via word clouds and VOSviewer program using a text mining technique. Analysis of restoration projects for endangered freshwater fishes elucidated that most research studies conducted to date were focused on genetics and release through captive breeding that could be classified into captive breeding and habitat environments. As for research projects related to amphibians/reptiles, monitoring projects had the highest number, followed by genetic, translocation, and monitoring studies. In addition, restoration projects for amphibians/reptiles included a large number of post-capture translocation projects. Thus, many projects were confirmed by public institutions rather than by the Ministry of Environment. Network analysis revealed that it was largely classified into capture, translocation, and Kaloula borealis. Based on these results, limitations, achievements, and challenges associated with projects conducted thus far are highlighted. Research directions for future restoration and conservation of endangered freshwater fishes and amphibians/reptiles in South Korea are also suggested.


초록보기
Abstract

South Korea presently harbors less than 800 long-tailed gorals (Naemorhedus caudatus), an endangered species. I report for the first time on the taxonomic status and genetic diversity of the Korean species using non-invasive fecal sampling based on mitochondrial cytochrome b gene sequence analyses. To determine the taxonomic status of this species, I reconstructed a consensus neighbor-joining tree and generated a minimum spanning network combining haplotype sequences obtained from feces with a new goral-specific primer set developed using known sequences of the Korean goral and related species (e.g., Russian goral, Chinese goral, Himalayan goral, Japanese serow, etc.). I also examined the genetic diversity of this species. The Korean goral showed only three different haplotypes. The phylogenetic tree and parsimony haplotype network revealed a single cluster of Korean and Russian gorals, separate from related species. Generally, the Korean goral has a relatively low genetic diversity compared with that of other ungulate species (e.g., moose and red deer). I preliminarily showcased the application of non-invasive fecal sampling to the study of genetic characteristics, including the taxonomic status and genetic diversity of gorals, based on mitochondrial DNA. More phylogenetic studies are necessary to ensure the conservation of goral populations throughout South Korea.


5
Yeounsu Chu(Wetlands Research Team, Wetland Center, National Institute of Ecology) ; Jungdo Yoon(Wetlands Research Team, Wetland Center, National Institute of Ecology) ; Kwang-Jin Cho(Wetlands Research Team, Wetland Center, National Institute of Ecology) ; Mijeong Kim(Wetlands Research Team, Wetland Center, National Institute of Ecology) ; Jeongcheol Lim(Wetlands Research Team, Wetland Center, National Institute of Ecology) ; Changsu Lee(Wetlands Research Team, Wetland Center, National Institute of Ecology) 2021, Vol.2, No.1, pp.42-52 https://doi.org/10.22920/PNIE.2021.2.1.42
초록보기
Abstract

Areas (WPA) were classified based on their habitat characteristics and on the analysis of their emergent fish communities, as estuarine (n=2), coastal dune (n=1), marsh (n=2), stream (n=2), and stream-marsh (n=1) types. The environmental factors revealed to have the greatest influence on the species diversity of emergent fish were maintenance and repair, installation of reservoirs, and construction of artificial wetlands around them. The present study offers basic information on the diversity of fish species in different Wetland Protected Area types that can be used to inform conservation and management decisions for WPA.


6
Kwang-Jin Cho(Wetlands Research Team, Wetland Center, National Institute of Ecology) ; Weon-Ki Paik(Daejin University) ; Jeonga Lee(3Vegetation & Ecology Research Institute Corp.) ; Jeongcheol Lim(Wetlands Research Team, Wetland Center, National Institute of Ecology) ; Changsu Lee(Wetlands Research Team, Wetland Center, National Institute of Ecology) ; Yeounsu Chu(Wetlands Research Team, Wetland Center, National Institute of Ecology) 2021, Vol.2, No.3, pp.153-165 https://doi.org/10.22920/PNIE.2021.2.3.153
초록보기
Abstract

The objective of this study was to provide basic data for the conservation of wetland ecosystems in the Civilian Control Zone and the management of Yongyangbo wetlands in South Korea. Yongyangbo wetlands have been designated as protected areas. A field survey was conducted across five sessions between April 2019 and August of 2019. A total of 248 taxa were identified during the survey, including 72 families, 163 genera, 230 species, 4 subspecies, and 14 varieties. Their life-forms were Th (therophytes) - R5 (non-clonal form) - D4 (clitochores) - e (erect form), with a disturbance index of 33.8%. Three taxa of rare plants were detected: Silene capitata Kom. and Polygonatum stenophyllum Maxim. known to be endangered species, and Aristolochia contorta Bunge, a least-concern species. S. capitata is a legally protected species designated as a Class II endangered species in South Korea. A total of 26 taxa of naturalized plants were observed, with a naturalization index of 10.5%. There was one endemic plant taxon (Salix koriyanagi Kimura ex Goerz). In terms of floristic target species, there was one taxon in class V, one taxon in Class IV, three taxa in Class III, five taxa in Class II, and seven taxa in Class I. Three invasive alien species (Ambrosia trifida L., Ambrosia artemisiifolia L., and Humulus japonicus Siebold & Zucc) were observed. For continuous conservation of Yongyangbo Wetlands, it is necessary to remove invasive alien plants and block the inflow of non-point pollutants.


7
Hyeong Bin Park(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) ; Byoung-Doo Lee(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) ; Chang Woo Lee(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) ; Jung Eun Hwang(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) ; Hwan Joon Park(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) ; Seongjun Kim(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) ; Jiae An(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) ; Pyoung Beom Kim(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) ; Nam Young Kim(Division of Restoration Research, Research Center for Endangered Species, National Institute of Ecology) 2021, Vol.2, No.4, pp.229-234 https://doi.org/10.22920/PNIE.2021.2.4.229
초록보기
Abstract

Iris dichotoma Pall. found on Daechung Island in Korea has been designated as an endangered species. To aid in conservation efforts of this species, this study investigated its germination characteristics and seed dormancy type. Four sets of seeds were incubated at different temperatures (4/1°C, 15/6°C, 20/10°C, and 25/15°C). One set of seeds was cold stratified (4 weeks at 4/1°C). The final germination rate and mean germination time showed that the optimal germination temperature was 25/15°C. Final germination rates were ~70%, showing no significant difference among temperature treatments. However, mean germination time were significantly different among all temperature treatments except for 4/1°C. Mean germination time for seeds with temperature treatments of 15/6°C, 20/10°C, and 25/15°C were 3.2, 2.1, and 1.5 weeks, respectively. At 25/15°C, the mean germination time was half of that at 15/6°C. Seeds of I. dichotoma had fully developed embryos at the time of dispersal. No additional growth of the embryo was observed. Cold stratification did not affect the final germination rate or the mean germination time. This study shows that seeds of I. dichotoma have no physiological or morphological dormancy, unlike other members of the Iris genus known to have seed dormancy that needs a relatively high incubation temperature (≥25/15°C) for mass propagation to occur. These results will be useful for understanding ecophysiological mechanisms related to the species’ habitat. They are also useful for mass propagation of I. dichotoma for the purpose of conserving this endangered species.


8
Jun-Kyu Park(Department of Biological Science, Kongju National University) ; Nakyung Yoo(National Institute of Ecology, Research Center for Endangered Species) ; Yuno Do(Department of Biological Science, Kongju National University) 2021, Vol.2, No.2, pp.120-128 https://doi.org/10.22920/PNIE.2021.2.2.120
초록보기
Abstract

The objective of this study was to analyze the genotype of black-spotted pond frog (Pelophylax nigromaculatus) using seven microsatellite loci to quantify its genetic diversity and population structure throughout the spatial scale of basins of Han, Geum, Yeongsan, and Nakdong Rivers in South Korea. Genetic diversities in these four areas were compared using diversity index and inbreeding coefficient obtained from the number and frequency of alleles as well as heterozygosity. Additionally, the population structure was confirmed with population differentiation, Nei’s genetic distance, multivariate analysis, and Bayesian clustering analysis. Interestingly, a negative genetic diversity pattern was observed in the Han River basin, indicating possible recent habitat disturbances or population declines. In contrast, a positive genetic diversity pattern was found for the population in the Nakdong River basin that had remained the most stable. Results of population structure suggested that populations of black-spotted pond frogs distributed in these four river basins were genetically independent. In particular, the population of the Nakdong River basin had the greatest genetic distance, indicating that it might have originated from an independent population. These results support the use of genetics in addition to designations strictly based on geographic stream areas to define the spatial scale of populations for management and conservation practices.


Proceedings of the National Institute of Ecology of the Republic of Korea