바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Search Word: Climate change, Search Result: 2
1
Sungjin Nam(Korea Polar Research Institute) ; Ji Young Jung(Korea Polar Research Institute) 2023, Vol.4, No.2, pp.86-94 https://doi.org/10.22920/PNIE.2023.4.2.86
초록보기
Abstract

Climate change is more rapid in the Arctic than elsewhere in the world, and increased precipitation and warming are expected cause changes in biogeochemical processes due to altered microbial communities and activities. It is crucial to investigate microbial responses to climate change to understand changes in carbon and nitrogen dynamics. We investigated the effects of increased temperature and precipitation on microbial biomass and community structure in dry tundra using two depths of soil samples (organic and mineral layers) under four treatments (control, warming, increased precipitation, and warming with increased precipitation) during the growing season (June–September) in Cambridge Bay, Canada (69°N, 105°W). A phospholipid fatty acid (PLFA) analysis method was applied to detect active microorganisms and distinguish major functional groups (e.g., fungi and bacteria) with different roles in organic matter decomposition. The soil layers featured different biomass and community structure; ratios of fungal/bacterial and gram-positive/-negative bacteria were higher in the mineral layer, possibly connected to low substrate quality. Increased temperature and precipitation had no effect in either layer, possibly due to the relatively short treatment period (seven years) or the ecosystem type. Mostly, sampling times did not affect PLFAs in the organic layer, but June mineral soil samples showed higher contents of total PLFAs and PLFA biomarkers for bacteria and fungi than those in other months. Despite the lack of response found in this investigation, long-term monitoring of these communities should be maintained because of the slow response times of vegetation and other parameters in high-Arctic ecosystems.


2
Suntae Kim(Department of Library and Information Science, Jeonbuk National University) 2023, Vol.4, No.1, pp.43-48 https://doi.org/10.22920/PNIE.2023.4.1.43
초록보기
Abstract

This study analyzed research trends in the field of ecological research. Data were collected based on a keyword search of the SCI, SSCI, and A&HCI databases from January 2002 to September 2022. The seven keywords, including biodiversity, ecology, ecotourism, species, climate change, ecosystem, restoration, wildlife, were recommended by ecological research experts. Word clouds were created for each of the searched keywords, and topic map analysis was performed. Topic map analysis using biodiversity, climate change, ecology, ecosystem, and restoration each generated 10 topics; topic maps analysis using the ecotourism keyword generated 5 topics; and topic map analysis using the wildlife keyword generated 4 topics. Each topic contained six keywords.


Proceedings of the National Institute of Ecology of the Republic of Korea